
The Visual Computer manuscript No.
(will be inserted by the editor)

A Framework for Interactive Image Color Editing

Przemyslaw Musialski · Ming Cui · Jieping Ye · Anshuman Razdan · Peter Wonka

Accepted: 9/24/2012

Abstract We propose a new method for interactive image
color replacement that creates smooth and naturally looking
results with minimal user interaction. Our system expects as
input a source image and rawly scribbled target color val-
ues and generates high quality results in interactive rates. To
achieve this goal we introduce an algorithm that preserves
pairwise distances of the signatures in the original image
and simultaneously maps the color to the user defined target
values. We propose efficient sub-sampling in order to reduce
the computational load and adapt semi-supervised locally
linear embedding to optimize the constraints in one objec-
tive function. We show the application of the algorithm on
typical photographs and compare the results to other color
replacement methods.

Keywords image processing · computational photography ·
color manipulation · interactive image editing · recoloring

1 Introduction

In recent years, digital photography has become very popu-
lar in both the consumer as well as the professional domains.

P. Musialski
Arizona State University, Tempe, AZ, USA
Vienna University of Technology, Vienna, Austria
E-mail: pm@cg.tuwien.ac.at

M. Cui · J. Ye · A. Razdan
Arizona State University, Tempe, AZ, USA
E-mail: {ming.cui | arazdan | jieping.ye }@asu.edu

P. Wonka
Arizona State University, Tempe, AZ, USA
King Abdullah University of Science and Technology, Saudi Arabia
E-mail: pwonka@gmail.com

Fig. 1 We show two results of the image color replacement method
presented in this paper. The first image is the original (copyrighted by
Norman Koren ������������	
���	
����	��). In the second im-
age we adjust the color of the sky. In the third, we also adjust the color
of the grass.

This development brought about a demand for advanced im-
age processing algorithms that are powerful on the one hand,
but easy to use on the other. This includes also the manipula-
tion of the color in pictures—perhaps the most fundamental
image processing task ever.

Currently available commercial software, as for instance
Adobe Photoshop [1], provide manual color processing tools
that are relatively convenient to use, although, sill require a
considerable amount of precise user input [20]. They rely
on local image characteristics and do not incorporate any
global color information into the editing process. Further-
more, there exist a number of approaches which process the
image’s colors as probability distributions [24,22,31,3], or
approaches that provide user controllable adjustment of the
colors. The latter ones are either constrained to local editing
[15], or incorporate global edit propagation [2]. These meth-
ods have proven to provide most satisfying results, but their
common disadvantage is usually quite a large computational
load due to global optimization.

The approach we present in this paper can be classi-
fied as a user controllable one. We rely on rough strokes

DRAFT - The definite version is available at: �������������	
��	�
�������������������������������

http://www.normankoren.com/
http://www.springerlink.com/content/q1272h717v1q3262/

2 Przemyslaw Musialski et al.

drawn on an image, which is efficiently incorporated into
the editing process. The main difference of our approach to
the already existing work is that we propose a novel for-
mulation of the optimization problem, where we draw from
the non-linear manifold learning methodology. We formu-
late the problem as a global optimization task, and we show
that this task can be solved as a sparse linear system. This
combines global editing as in An and Pellacini [2], who
use a dense solver, and a sparse optimization as utilized in
Lischinski et al. [15], who do only local pixel propagation.

A sparse approach to global propagation has been pro-
posed in the work of Pellacini and Lawrence [21] in the con-
text of measured material appearance editing. Their work
was also inspired by the manifold-learning methodology
[25], however, their solution was not suitable for high-
quality image appearance propagation as shown later in the
paper of An and Pellacini [2]. Instead, An and Pellacini pro-
posed a formulation which uses a dense least-squares solver
that allows them to propagate the affinities of all pairs of pix-
els to each other in order to maintain the quality. However,
their dense linear system generally does not fit into the com-
puter memory for common images. Their remedy is to solve
it approximately using the Nystrom method [11], which is
not accurate at small-scale edits and does not scale well for
large input. In contrast, the method of Lischinski et al. [15]
provides high-quality results and uses a sparse solver, but it
propagates the edits only to spatially coherent nearby pixels
and requires more accurate user input in order to perform
well.

In this paper we provide a formulation of the optimiza-
tion which strives for both a sparse solution as well as global
pixel interaction. To achieve this we interpret the image
color as a manifold in 3d space by utilizing the locally linear
embedding algorithm [26]. We show how the color manifold
can be warped globally in order to achieve recoloring while
its local relationships are preserved in order to maintain the
appearance of the original image.

In addition, we introduce an efficient sub-sampling strat-
egy in order to achieve interactive performance. Xu et al.
[38] proposed a speed-up approach to the formulation of An
and Pellacini [2] which exploits the fact that often pixels in
the image can be approximated by a much smaller set of
clusters. Driven by similar observations we sub-sample the
image in order to greatly reduce the number of color points
to be processed. We then approximate the manifold with
the sub-sampled points and interpolate the remaining val-
ues. Unlike the method of Xu et al., we do not need to build
piece-wise linear functions each time user-provides new in-
put strokes. Instead, we maintain the same sub-sampling for
different user input, where we only update the user provided
target color values. Our method has a small memory foot-
print, it scales linearly in the number of pixels, and it allows

interactive editing. We also show that it delivers results of
the same or better quality as others.

In the remainder of the paper we provide an overview
of the related work in Section 2. In Section 3 we present
the details of our approach and discuss its further aspects. In
Section 4 we present the results and compare them to other
works, and finally in Section 5 we conclude the work.

2 Related Work

Several papers aim at automatic color transfer between im-
ages, where usually one image serves as color-mood source
which is transferred to the others. Reinhard et al. [24] pro-
posed a simple yet effective method for this purpose based
on linear adjustment of color distribution parameters. This
has been improved by Xiao et al. [36] and Pitie and Kokaram
[22] who applied more sophisticated probabilistic models.
In Pitie et al. [23] they extend their method in order to per-
form non-linear adjustment of color probability distribution
between images. Also Chang et al. [6,5] presented global
color transfer by perceptual color categorization for images
and video. Yang and Peng proposed a method for color-
mood transfer which preserves spatial coherence based on
histogram matching [39]. This idea has been extended by
Xiao et al. [37] who solve the problem of global trans-
fer and local fidelity in two steps: histogram matching and
a gradient-preserving optimization. Wang et al. proposed
global color-mood exchange driven by predefined and la-
beled color palettes [31] and example images [32]. Cohen-
Or et al. [9] introduced a framework which uses color-
harmony rules in order to optimize the overall appearance
after the user has altered some of the colors. Shapira et
al. [27] proposed a solution which is based on navigation
through the appearance of the image in order to obtain de-
sired results. Also automatic methods to colorize grayscale
images based on examples from internet images [16], and
semantic annotations [8] have been introduced. In general,
methods which transfer colors globally are not suitable for
precise (re-)coloring of small objects or humans.

Other approaches try to introduce at least rough control
over the results. Welsh et al. [34] proposed a global color-
mood transfer aiming at colorization of grayscale imagery.
It is based on texture and luminance matching across the im-
ages and it allows simple user interaction in the form of rect-
angular swatches, but it also fails in cases of detailed trans-
fers. Tai et al. [29,30] attempted to solve these problems by
providing a method for soft color segmentation based on a
mixture of Gaussian approximation (GMM) which allow in-
direct user control. Further improvements of automatic but
controllable color-mood transform based on Reinhard et al.
is presented in [13].

In contrast to methods mentioned above, locally control-
lable systems provide the user very accurate influence over

DRAFT - The definite version is available at: �������������	
��	�
�������������������������������

http://www.springerlink.com/content/q1272h717v1q3262/

A Framework for Interactive Image Color Editing 3

SamplingSampling

ci

xiSource

Input

TargetC

X

SamplesSamples

yi

OutputOutput Y

Constrained Mapping in Color SpaceConstrained Mappinng in Color Spacepin

xi ci yif(x)i
Fig. 2 The pipeline of our algorithm - refer to Section 3 for details. From left to right: input image X and target color map C. From both input
images landmarks xj and cj are sampled. For all remaining pixels linear interpolation coefficients are computed. The sub-sampled input points
x j (in L*a*b* color space) are warped towards target points cj under the constraint of mutual distance preservation. Next, points y = f (xj,c j)
indicate new positions of the landmark points, here shown with old colors. Than we show the final positions and colors after the mapping as points
y j . Finally, the output image is reconstructed from the yj point set by the previously stored linear coefficients, converted to RGB, and displayed.

the results. In general, these methods allow the user to scrib-
ble over the image in order to alter the appearance of similar
regions in some parts of the image. A simple example of
such an approach is the color transfer brush [17] which ap-
plies locally the equations of Reinhard et al. [24], albeit its
modeling capacity is very limited. Wen et al. [35] and An
and Pellacini [3] also propose strokes driven methods for
transfer of color from local parts across images. A scribble-
driven method was presented by Yatziv and Sapiro [40] who
introduced colorization based on chrominance blending and
geodesic distance. It requires quite accurate user input in or-
der to perform well. Similar user interaction has been suc-
cessfully applied for grayscale colorization [12], local image
adjustment [15] and edit propagation [2]. Also a bilateral
filter based framework, e.g. Chen et al. [7], can be used to
recolor particular image parts. Recently, Farbman et al. [10]
utilized diffusion distances in the framework of Lischinski et
al. [15] which partially allows for more global editing with
their solver. On the other hand, they show that the usage
of diffusion distance does not generally address the locality
problem and can be seen as a complementary approach to
Euclidian distance optimization.

The methods of Lischinski et al. and An and Pellacini
are based on least-squares optimization and are similar to
our approach. Though we present a different formulation of
the problem by drawing from the locally linear embedding
approach [25,26]. The main difference of our system is the
way how pixel neighborhood weights as well as how target
colors are incorporated into the solution.

Further work are speed-up methods, like Xu et al. [38]
who proposed an acceleration to the approach of [2] based
on kd-tree-subdivision of the image, but they still utilize the
dense solver. Li et al. [14] formulate the problem as Radial-
Basis-Function kernels interpolation. We also utilize inter-
polation in the first step, but still perform global optimiza-
tion in the second, since our observations have shown that
pure local interpolation can provide artifacts.

Recently, Carroll et al. [4] proposed an interactive ap-
proach in order to decompose the input image into its Lam-
bertian illumination components. Since their actual color
replacement method is independent of their model, our
method can be seen as complementary.

3 Controllable Optimization Algorithm

In this paper we introduce a strategy for color replacement
that combines two apparently contradictorily goals. The first
is distance preservation that ensures that two color-samples
from the source image are mapped in such a way that the
distance between them in the new image remains similar.
The second goal is color transfer that aims at mapping of
the samples from the source image as near as possible to the
user-provided target values in the target image. The advan-
tage of this idea is the fact that re-mapped colors generally
retain their local variations on the one hand but change their
global appearance to the desired values on the other. All to-
gether, this results in very naturally looking output images
(cf. Figures 1,14).

3.1 User Interaction

As observed in previous work [12,15,40,21,2], user edits in
form of rough strokes have proven to be an easy and effi-
cient way of interaction. Pellacini et al. [21,2] defined user
edits more generally as edit parameters that should be prop-
agated over the output image. In our system the user indi-
cates the desired output appearance (color, hue, saturation or
lightness) in the form of rough strokes over the input image.
The result is a sparsely scribbled image which we hence-
forth call the target image. The expected strokes do not have
to be precise and do not have to match the boundaries of
the underlying objects very well; only a clear assignment
of the new color to an object is important. Our edits can be

DRAFT - The definite version is available at: �������������	
��	�
�������������������������������

http://www.springerlink.com/content/q1272h717v1q3262/

4 Przemyslaw Musialski et al.

sparse or dense, which is more similar to the way interaction
is applied in the work of [2], while the interaction in other
methods [12,15,40] has to be more precise. In general, we
want the user to specify the color for all image parts, even
those which should remain unchanged. Figure 3 shows a tar-
get image on the left and an alpha mask on the right. In the
left image, the storks indicate the user input, where both the
changed colors of the background as well as the kept col-
ors of the face have been scribbled. The mask indicates that
only the white regions contribute target values. This kind of
interaction is rather easy and intuitive, even for untrained
users.

3.2 Definitions

We define the source image as X , the target image as C and
the output image as Y . The images have the size N =width×
height pixels and can also be seen as sets of points X =

{x1,x2, ...xN}, Y = {y1,y2, ...yN}, and C = {c1,c2, ...cN},
where all xi,yi,ci ∈ R

D reside in the same D-dimensional
space. Note that all points xi, yi and ci with the same index
correspond to each other. We want to compute a non-linear
mapping f : RD →R

d that transforms the given input image
X with respect to the user defined target image C to a new
image Y , such that

f : (X ,C)→ Y . (1)

We provide here a definition for the general D-dimensional
case since our algorithm is not limited to a specified num-
ber of input and output dimensionality. The input space is of
the dimension D and the output space of the dimension d,
usually such that d < D. In Section 3.6 we discuss the pos-
sibility to use local image patches as points xi as well as the
case where a color image can be mapped to a user defined
grayscale.

In practice, we usually work with 3d color spaces, thus
for the rest of the paper we assume D = d = 3 w.l.o.g. Fur-
ther, we follow the argumentation which suggests that the
Euclidian norm in RGB color space is not a good measure
for perceptual distance. Therefore, throughout the paper we

Fig. 3 Example of a source and target image. Left: we ask the user
to specify the target colors by simply drawing rough strokes over the
original. Right: values from the selected regions (white) serve as target
points. Note that also target values of non-changed points have been
specified.

measure and compute the distance between points in a per-
ceptually Euclidian color space CIELAB (L*a*b*) [28] and
all norms are L2 vector norms, denoted ‖·‖.

3.3 Optimization Formulation

We want to define the mapping f of vectors xi to vectors yi,
such that it preserves pairwise Euclidean distances of xi as
well as forces yi to be as close as possible to ci. This task
can be formulated as minimizing the following equation:

E = ∑
i

∑
j

(‖xi − x j‖−‖yi− y j‖)2 +λ ∑
i

‖yi − ci‖2 , (2)

where λ is a parameter that determines the relative impor-
tance of the two goals. Unfortunately, the function in Equa-
tion 2 is non-smooth and thus hard to solve effectively. To
relax it to a solvable problem, we replace the first term in E,
such that

Ẽ = ∑
i
‖yi −∑

j
wi jy j‖2 +λ ∑

i
‖yi − ci‖2 . (3)

This equation is quadratic in terms of the unknowns y i. Note
that with Equation 3 we do not provide a strict mathematical
reformulation of Eq. 2 but rather than an approximation in
the locality of each xi.

The main idea of this reformulation is to encode the ge-
ometric invariance in such a way that it can be expressed as
a quadratic term of the unknown yi. We do so by utilizing
the locally linear embedding algorithm (LLE [25]), which
generates a manifold in the underlying space which is lin-
ear at each sample point with respect to its local neighbor-
hood. This is achieved by “encoding” the pairwise relations
‖xi−x j‖ of the original samples and their neighbors (cf. Eq.
2) into the weights wi j (cf. Eq. 3). Saul and Roweis [26]
have shown that properly chosen weights wi j are invariant
under rotation, translation and scale. This means that each
particular output color sample yi is placed in the new image
in such a way, that the distances to its neighbors reassemble
the distances of the original color sample xi in the original
image as best as possible in the least squares sense (Fig. 4).

xi

xj

wij

wij+2

wij+1

xj+1

xj+2

yi

yj

wij

wij+2

wij+1

yj+1

yj+2

f

Fig. 4 Left: the weights wi j are computed in the original image using
the original samples xi and their neighbors xj . Right: the same weights
are used to best reconstruct all output samples yi from their respective
neighbors yj in one large linear system.

DRAFT - The definite version is available at: �������������	
��	�
�������������������������������

http://www.springerlink.com/content/q1272h717v1q3262/

A Framework for Interactive Image Color Editing 5

Fig. 5 A series of results of our algorithm. The first image is the original (copyrighted by Norman Koren������������	
���	
����	��). The
following results are obtained with optimization of the chroma-channels a* and b* only, while the L* channel is kept from the original.

The weights can be computed for each xi as a linear com-
bination of its nearby points x j by minimizing the following
energy for each xi independently:

F =
N

∑
i=1

‖xi − ∑
j∈Ni

wi jx j‖2 , (4)

with respect to the invariance constraint: ∑ j wi j = 1 and to
the sparseness constraint: wi j = 0 if j /∈Ni. Here Ni denotes
a (small) set of local neighbors of the point xi in X . The
optimal weights wi j can be computed in closed form. Due
to the mentioned constraints, we can rewrite Equation 4 for
one data point x as

‖x−∑
j

w jx j‖2 = ‖∑
j

w j (x− x j)‖2 = ∑
j
∑
k

wjwkg jk ,

where g jk is an entry of a local Gram matrix G=
{

g jk
}

with
elements: g jk =(x− x j)(x− xk) , with x j and xk as neighbors
of x. This matrix is symmetric positive semi-definite and the
weights of x can be computed by its inversion. A more effi-
cient way is to solve a linear system of the form:

∑
k

g jkwk = 1 ,

and rescale the weights to ∑ j w j = 1. This system can be
solved for all N D-dimensional points with K neighbors in
together O

(
DNK3

)
time. In practice this system is over-

determined in the case when the number of neighbors is
bigger than the dimensionality of the space. In our appli-
cation this is usually always the case, since we work with
only 3d points and we have empirically figured out that the
number of neighbors should be about 11 in order to pro-
vide good results. Thus, to solve for unique weights we uti-
lize Tikhonov-regularization by adding a small multiple of
the identity to the coefficient matrix as proposed in [26].
This provides weights which distribute the contribution of
the nearest points to each xi more uniformly.

In fact, the described weighting is the main difference of
our approach to the others, e.g, Lischinski et al. [15], Chen et
al. [7], or An and Pellacini [2]. In those systems the weight-
ing of the neighbors is usually accomplished by the expo-
nential fall-off function of their (Euclidian) distance d to the
particular point: wi j = exp(‖xi − x j‖). While those weights

are in general edge-aware and smooth, they do not represent
the particular point as a linear combination of its neighbors
as the LLE weights do.

Having well-defined weights, Equation 3 can be mini-
mized. Since for each data point in the original space wi j

are invariant to rotation, scaling and translation of this point
w.r.t. its local neighbors, minimizing Ẽ has locally the same
effect as of minimizing E. Globally, the manifold is bend
and in general E is not enforced for distant points, but this
solution is even more desirable, since it allows to fulfill the
color transfer more easily: the manifold is warped towards
the target values ci (cf. Figure 2). One might imagine this op-
eration as pulling the entire manifold on the selected points
xi towards new values ci. Since each of the selected points is
connected to its local neighbors and each such a local vicin-
ity can be transformed linearly, the pulling process affects
the entire manifold and results in new positions yi which ide-
ally respect our both goals: preservation of local distances
as well as global color transfer.

3.4 Acceleration

The presented algorithm is designed to work with theoret-
ically all pixels in the image. Unfortunately, it would re-
quire target values for all pixels and providing such tar-
gets is tedious and not desirable. Further, the computation
time would be very high. In order to address both problems
our approach is a sub-sampling strategy which deals with
sparse target values and reduces the computational load sig-
nificantly. It is based on the observation that all color points
can be expressed by linear combinations of other points.
Thus, our idea is to determine a number of significant sam-
ple points which we call landmark points and to run the op-
timization only on these. The remaining points are recon-
structed as linear combinations of the landmarks.

We determine the landmarks using the original point set
X : we draw a random index set J of the size |J |=M <<N
from the full index set I = {1 . . .N} of all points. In order to
get significant points into J , we require the chosen points
x j to be (1) unique and (2) linearly independent such that
they form a (generalized) Delaunay triangulation in R

D. For
each of the remaining points xi in the set {i|i ∈ I\J } we

DRAFT - The definite version is available at: �������������	
��	�
�������������������������������

http://www.normankoren.com/
http://www.springerlink.com/content/q1272h717v1q3262/

6 Przemyslaw Musialski et al.

Beta = 0.1 Beta = 0.05 Beta = 0.01 Beta = 0.005 Beta = 0.001

M = 21064

RMS = 0.82% RMS = 1.08% RMS = 1.33% RMS = 3.69% RMS = 5.78%

M = 6016 M = 3395 M = 783 M = 410

S
am

p
lin

g
E

rr
o

r
x

10
0

O
u

tp
u

t

Fig. 6 Comparison of the influence of the parameter β on the results with respect to a reference image which we have computed with β = 1. The
middle row shows the normalized RMS-error image, inverted and amplified by factor 100 for visualization propose. The last row shows the actual
landmarks sampled with respect to β . We used the original shown in in Figure 5, left.

determine the (D+ 1)-dimensional simplex S in which it is
contained and compute its linear coefficients L i with respect
to S. Now, all points xi can be reconstructed as linear com-
binations of the vertices of their Delaunay-simplices, thus,
Li are in fact barycentric coordinates. Note that they have to
be computed only once in the preprocessing stage.

Now we solve the problem of Equation 3 only for the
landmark points {y j| j ∈ J } and all other points {yi|i ∈
I\J } are computed as linear combinations of the known
points y j using the previously computed linear coefficients
Li. Also the target values can be assigned in a user interac-
tion pass to landmarks points {c j| j ∈ J } only.

The sub-sampling rate of the points is controlled by the
ratio β , such that M = β ·N. This value has influence on the
computation speed but also on the quality of the resulting
images. Increasing this value provides more accurate results
since the reconstruction error of the images is lower. The
rationale is that the more landmark points are sampled the
underlying manifold is better approximated. The drawback
is the longer computational time. In empirical experiments
we have found that the value of β = 0.01 is a good tradeoff
between speed and quality. Figure 6 depicts this relation-
ship.

3.5 Constrained Sparse Least-Squares Solution

In Section 3.3 we have formulated the problem of color-
mapping as sparse optimization and in Section 3.4 we pro-
posed an approach to further reduce the number involved
points. In this section we propose an efficient solution.

The minimization problem of Equation 3 is quadratic
and can be formulated in matrix form as:

Ẽ = ‖My‖2 +λ‖y− c‖2 , (5)

where c are the sampled target points arranged in a vec-
tor and y are respective points in the output image Y . The
matrix M is the sparse coefficient matrix of the pairwise
weights given by M= [I−W], where W contains all respec-
tive wi j as entries. Notice that henceforth we operate only on
the sub-sampled points. In addition, the system is sparse be-
cause for each point the weights are zero except for a small
neighborhood of the size K. The total number of elements is
thus MK.

In the terms of LLE, the d-smallest eigenvalues of MTM
provide a lower dimensional manifold of the underlying data
(refer to [26] for details about LLE). In our case we strive
for another solution since we have prior information pro-
vided by the user in the target image C. Even if this informa-
tion is incomplete because the target values are not given to
all pixels ci, we can still resort to constrained least-squares
and solve Equation 5 by incorporating only partial prior into
the solution – for instance using the method of weighting.
Without loss of the generality we can assume that the points
which correspond to user-assigned target values are stored in
the vector y1, and the respective target points are in the vec-
tor c1. Points with unknown target are stored in y2. Finally,
rearranging the rows of M such that the y1 points correspond
to the M11 rows in

M =

[
M11 M12

MT
12 M22

]
,

DRAFT - The definite version is available at: �������������	
��	�
�������������������������������

http://www.springerlink.com/content/q1272h717v1q3262/

A Framework for Interactive Image Color Editing 7

K = 4, tw = 193 ms K = 6, tw = 211 ms K = 11, tw = 251 ms K = 99, tw = 2,201 ms

RMS = 5.27% RMS = 1.01%

K = 8, tw = 221 ms

RMS = 0.63% RMS = 0.30% RMS = 0.11%

O
u

tp
u

t
E

rr
o

r
x

10
00

Fig. 7 Comparison of the influence of the number of neighbors K of the LLE embedding with fixed β = 0.01. The error is measured with respect
to the original image (Figure 5, left). The error-image is inverted and multiplied by the factor of 1000 and for visualization purposes. The time tw
is the computation time of LLE weights with respect to K.

we can rewrite Equation 5 as

Ẽ =

[
y1

y2

]T

MTM
[

y1

y2

]
+λ

[
y1 − c1

0

]T [
y1 − c1

0

]
. (6)

The problem can now be solved as an augmented system of
linear equations of the form:
[

M11 +λ I M12

MT
12 M22

][
y1

y2

]
=

[
λc1

0

]
. (7)

We observed that we obtain smooth results by setting the
value of λ = 0.001 using the direct sparse MATLAB solver.

3.6 Discussion

Choice of the Parameters. The presented method has two
free parameters: the first one is the sub-sampling factor β
and the second one is the number of nearest neighbors K in
the optimization part. In general both influence how well the
color manifold will be approximated. Furthermore, the qual-
ity of the generated manifold also depends on the input pro-
vided by the user which we discus in the next paragraph. In
empirical experiments we have determined that usually 1%
of the pixels of the image (β = 0.01) is enough to approx-
imate the color manifold for the color exchange purpose.
Figure 6 depicts this issue. The number of nearest neighbors
for the locally linear embedding approximation is in all our
examples (except stated otherwise) K = 11. In Figure 7 we
show the RMS-error of the result depending on the choice
of K, which we measure on the reconstruction of an image
with β = 0.01 with respect to the original image. Here we
see that a higher number of neighbors does not result in sig-
nificantly better approximation. This is not surprising since
also Saul and Roweis [26] have reported that LLE performs
best in a certain range of chosen neighbors. For this reason
we have fixed the parameter at K = 11.

User Input. A limitation of our method is the fact that we
have to provide prior information to all objects present in the
image. This means that the user has to provide input strokes
also for those regions of the original image that should re-
main unchanged. Figure 8 depicts this issue. The reason of
this limitation lies in the nature of the computed manifold –
the weights which encode the geometric invariance are rel-
ative to the chosen neighborhood. Thus, color-points rela-
tions in a neighborhood are kept with respect to each other,
but the global position of a particular neighborhood is un-
defined. In order to handle this, we provide target values for
chosen points, and since these are connected to others, forc-
ing them towards the target affects their neighbors as well. If
we do not provide target values to some particular regions,
it is not ensured that they will keep their original position,
as shown in Figure 8, right.

Chroma Distance. In the L*a*b* space the color is ex-
pressed by the a*b* chromatic components whereas L*
holds the lightness [28]. Thus, we can change the goal to
preserve the chromatic distances only by computing the dis-
tance as C∗

ab =
√

a∗2 + b∗2 and the output yi will be calcu-
lated only in the 2d a*b* plane. Since the lightness channel

Uncomplete Target Complete Target

Fig. 8 Left: target is only provided to the background. Right: target
additionally provided to the unchanged parts. In order to obtain correct
results the user has to provide target values to all image objects, even
those which remain unchanged.

DRAFT - The definite version is available at: �������������	
��	�
�������������������������������

http://www.springerlink.com/content/q1272h717v1q3262/

8 Przemyslaw Musialski et al.

is not taken into account, we are now free to assign it to any
value without affecting the metric. The obvious choice is to
set it to the values as in the lightness channel of the original
image. In praxis it has turned out that if the desired changes
do not affect the lightness, like contrast corrections, best re-
sults can be achieved by only using the a*b* components, as
shown in Figure 5.

Spatial Components. One interesting issue not mentioned
sofar is the incorporation of the spatial distance of the pix-
els into the computation. This allows to modify colors only
locally. We facilitate it by adding two spatial dimensions to
the input data points xi and normalize them into the range
[0 . . .1]. We also add an additional spatial scaling parameter
α such that we can weight the spatial components. These
two dimensions encode the spatial relationship for the in-
put pixels and the nearest-neighbor search algorithm will
consider both color similarity and spatial distances. The ra-
tionale behind this modification is that, for the task of im-
age recolorization, we do not need the mapping to be a
globally consistent. A similar approach has also been used
in the method of Pellacini and Lawrence [21]. Using such
a formulation constrains the propagation of colors to spa-
tially nearby points for α > 0, which makes our system to
act more similar to the approach presented in Lischinski et
al. [15] (cf. Figure 9). Without the spatial component, the
color is exchanged globally over the entire image. Note that
higher-input dimensionality introduces more computational
effort to the interpolation stage, since we have to compute
5d barycentric coordinates.

Varying Dimensionality. As mentioned in Section 3.2 our
method is derived from the LLE approach which is also an
unsupervised dimensionality reduction tool. This is since the
weights computed on the original input X are not subject
to any specific dimensionality, but rather contain local geo-
metric properties. These are than propagated to the target Y
which can be in general of any other dimensionality. By us-
ing local image patches of the size, e.g., 5× 5 pixel we can
obtain 75-dimensional input points. Weights can be com-
puted on this input in exactly the same manner as in the 3d
case.

We have experimented with this approach, but similar
like Farbman et al. [10] we could not achieve any signifi-
cant improvements in the appearance changes. Note that a

Fig. 9 Mapping the one of the red flowers in the left image to a differ-
ent hue by incorporating spatial coordinates.

bigger neighborhood results in more computational effort.
Furthermore, high-dimensional input introduces a problem
to the sub-sampling and interpolation stage. Thus, it remains
future work to investigate the possibilities of the dimension-
ality reduction properties of our solver.

Another issue is the fact that in our approach the desired
output dimensionality is also free to be chosen. Usually this
will be either a 3d-color or a 1d-grayscale. In the latter case
the user is free to assign custom grayscale values to particu-
lar colors or to partially map color to grayscale. In Figure 15
we show an example where the output is partially mapped
to a black-and-white image.

Finally, one might consider using the method for lifting
the dimensionality of grayscale imagery by providing color
priors. We have experimented with this idea and approached
a number of difficulties due to the ambiguity of the one-
dimensional signal. While our method does work in cases
where each region of the grayscale image can be mapped
uniquely to a color, this remains an exception from the gen-
eral case. Colorization requires a more involved integration
of gradients in the spatial domain [12], which is not directly
part of our framework. We consider to explore this issue in
a future project.

4 Results and Applications

We implemented the algorithm in MATLAB 2010a. We use
the ANN toolkit [18] to determine nearest neighbors, which
is a C++ library. Our prototype is currently not optimized for
speed, but for easy distribution and maintenance. For user
interaction we used Adobe Photoshop CS5 to draw target
strokes, which we imported directly in MATLAB using the
MATLAB-Photoshop interface.

4.1 Performance

If run on the whole image our optimization algorithm would
take a few minutes on an average desktop PC (we use Intel-
I7@3.6GHz, 8GB RAM and Windows 7-64bit). However,
with the acceleration presented in Section 3.4 the computa-
tion can be speed-up considerably. Table 1 shows the run-
ning times of examples presented in Figure 14 with sam-
pling rates of β = 0.01 and K = 11, where we distinguish
between preprocessing time for computation of the linear
coefficients and interactive editing time, where the optimiza-
tion is solved. The bottleneck is currently the quite slow
implementation of the barycentric coordinates computation,
where we are using the method of MATLAB. Note that this
step as well as the step of weights computation are highly
parallelizable since each point is processed independently.
Further, both steps are preprocessing done after loading the

DRAFT - The definite version is available at: �������������	
��	�
�������������������������������

http://www.springerlink.com/content/q1272h717v1q3262/

A Framework for Interactive Image Color Editing 9

Table 1 Running times for the examples shown in Figure14 with sam-
pling ratio β = 0.01. Time given in milliseconds and M is the number
of used samples. The reported times are td for L*a*b* conversion and
barycentric coordinates computation, tw for weights computation, te for
computation of the mapping, tr for reconstruction and the conversion
from L*a*b* to RGB. Note that only the last two operations have to be
performed after user interaction.

Preproc. Interactive Total
Fig. Size M td tw te tr t
14.1 820 × 547 3797 1,073 481 23 145 1,722
14.2 820 × 546 4271 1,153 276 41 222 1,692
14.3 820 × 546 3646 964 397 24 204 1,589
14.4 820 × 547 3690 1,055 491 33 191 1,770

0

10

20

30

40

50

60

0

5

10

15

20

25

30

35

40

45

00 01 01 02 03 04 08

Ti
m

e
t

(s
ec

on
ds

)

Sa
m

pl
e

Po
in

ts
 M

 (
x1

00
0)

Mega-Pixels

M

t

t_d

t_w

t_r

t_e

Fig. 10 Comparison of total running time (in seconds) with respect to
image size in mega pixels and the number of sample points (M). The
total time curve (t) represents the sum the respective timings: td , tw, te,
and tr as described in Table 1. Note that the image size in mega-pixels
is doubled in each step, thus the running time is linear in the number
of pixels. Refer to Table 2 for details.

image; during the interaction only the optimization and in-
terpolation steps have to be performed. Here we can see in
the table that the optimization is very fast, even without code
optimization. This is due to the quite small and sparse lin-
ear system. The interpolation and color conversion steps are
again state-of-the-art routines.

Moreover, all particular operations of our method scale
linearly with the number of pixels, which is visible in Figure
10 and Table 2. For this test we have used the same image
at 7 different resolutions, using the same user input. Notice
that we double the number of pixels in each measurement
depicted in the chart.

Finally, the memory of the solver is bounded by the
number of samples M, where the sparse matrix W contains
KM entries and the target vector at most M. For the inter-
polation we have to maintain (D+ 1)N linear coefficients
and (D+1)N indices, where N is the number of pixels. Our
method is also generalizable to video input, similarly as pro-
posed by Levin et al. or Xu et al. [12,38]. We relegate the
implementation of video-processing to future work, but we
do expect to retain the same performance.

Table 2 Comparison of total running time (in seconds) with respect
to image size in mega pixels (MP) and the number of sample points
(M). The respective timings td , tw, te, and tr as described in Table 1, t
denotes the total time. Refer to Figure 10 for a graphical interpretation.

MP M td tw te tr t
0.4 3333 1.379 0.246 0.025 0.260 1.911
0.8 5820 2.427 0.518 0.050 0.459 3.455
1.1 7778 3.335 0.804 0.073 0.627 4.840
1.9 12846 6.638 1.800 0.168 1.100 9.704
2.6 17267 9.365 2.793 0.267 1.530 13.955
4.2 25564 15.391 5.653 0.517 2.395 23.956
7.5 41342 28.332 13.885 1.245 4.243 47.706

4.2 Applications

Appearance Propagation. In Figure 11 we compare our re-
sults to these of the appearance propagation (AppProp) me-
thod [2]. The first two images are taken from their webpage.
In general the results are comparable, but note that we use a
sparse solver with additional sub-sampling, while AppProp
uses a dense approximation. The last example is generated
by our implementation of the AppProp algorithm (we have
implemented it in MATLAB). Here we perform a very dras-
tic color swap usually not shown in the examples of App-
Prop. In the close-up view in Figure 12 we show that our
method provides much smoother transitions on the bound-
aries of distinct parts within an image.

Figure 13 (f) shows the result of the propagation method
of Pellacini and Lawrence [21] generated with an appear-
ance graph with 10 nearest neighbors. Our result is also gen-
erated with K = 10 and our solution does not provide arti-
facts. There are two major differences between these two
methods: (1) our formulation uses different weights for the
neighbors which are computed in a linear system, such that
they reconstruct the input. The weights in AppWand [21] are
defined by an exponential fall-off function of the Euclidian
distance between the neighbors to the actual (BRDF) sam-
ples. While these weights reflect the distance of the points
in the BRDF-space, they to not reproduce the point from its
neighbors in the least-squares sense as our weights do (cf.
Section 3.3). The second difference (2) is that our nearest-
neighbor graph is fully connected since we determine a fixed
number of neighbors for every point. This ensures that our
color manifold is a single connected component.

Figure 13 (c) shows a comparison to the results of Farb-
man et al. [10] where we can see that our method propagates
the color more exact than the other. We can see it in the lower
left corner of the fruits-container which is not fully covered
by the diffusion distance.1

1 Note that there is another high-level relationship between diffusion
distance and locally linear embedding since both methods are based on
spectral graph analysis. However this issue does not affect our algo-
rithm and is beyond the scope of this paper (cf. Nadler et al. [19]).

DRAFT - The definite version is available at: �������������	
��	�
�������������������������������

http://www.springerlink.com/content/q1272h717v1q3262/

10 Przemyslaw Musialski et al.

Original User Input An & Pellacini 2008 Our Result

Fig. 11 Comparison to the results presented by [2]. We can observe that we can reproduce the results. The last result is done on our input and we
perform very drastic color swap (red is swaped with green and the shirt is recolored). Here we can see (cf. Figure12) that our method provides
smoother transitions between the image objects. Last image copyrighted by Tom Ang (������������	������	��).

Original An & Pellacini 2008 Our Result

Fig. 12 Close-up of the comparison shown in Figure 11. We can see
that our method provides smoother transitions between objects of dif-
ferent color, like wall and skin.

In Figure 13 (d) we compare our results to those of the
bilateral grid framework [7]. Here we see that our method
exchanges only the selected colors and does not bleed over
to neighboring objects as partially happens in the bilateral
grid example. Again, the main difference here is that the grid
framework is much more dependent on the local neighbor-
hoods in the spatial domain, unlike our system which estab-
lishes neighborhood links across the entire image.

Illumination Color Transfer. Recently Carroll et al. [4] in-
troduced a method which decomposes the input image ac-
cording to an illumination model. Their method produces
very naturally looking results, but the cost is a more so-
phisticated model. Furthermore, their work aims mainly at

the decomposition of the image, the actual color adjustment
is performed using Photoshop and Robust Matting [33]. In
contrast, our image color model is not physically driven thus
we are not able to accurately reconstruct their results. Never-
theless, we try to create a similar output as shown in Figure
13 (a). In fact, the final appearance depends on the strokes
provided and thus on the user.

Global Color Transfer. Color transfer is usually established
by probability distribution adjustment, which is in general
more or less sophisticated histogram adjustment. In Figure
13 (e) we show the results of our method in comparison to
the global method of Pitie and Kokaram [22]. While we do
not transfer the structure of the background, our method pro-
vides a result which brings the colors of the example over the
original structure. Moreover, small detail, like the blooms
are well preserved.

Color Replacement Tool. Figure 13 (b) shows the reverse
of the color replacement tutorial for Photoshop [20]. In this
tutorial the author shows particular steps how to manually
replace a color in an image with Photoshop. We have re-
versed the results of the tutorial and replaced the violet color
of the horse back to brown. We did so due to the lack of the
original, brown horse image, but the workflow of the process
is essentially the same. The pure editing time to recolor the
image with Photoshop as described in the tutorial took us

DRAFT - The definite version is available at: �������������	
��	�
�������������������������������

http://www.tomang.com/
http://www.springerlink.com/content/q1272h717v1q3262/

A Framework for Interactive Image Color Editing 11

over one minute. Additionally, in Photoshop the user has to
adjust several parameters, like brush-size, tolerance, mode,
etc. On the other hand, scribbling 3 or 4 rough strokes and
the solving time took all together about 10 seconds. This
difference would become even more evident if the task were
to recolor many different objects in an image, which would
require a lot of precise interaction in Photoshop.

5 Conclusions

In this paper we proposed a framework for editing of the
color in images and photographs. It allows to replace the
color appearance in a smooth and seamless manner with
simple user input which has proven to be convenient. Our
method shows to perform well for wide range of motives,
like landscapes, humans, animals, plants and fuzzy objects.
In general the algorithm proves to be convincing and de-
livers results which appear highly natural. We compare our
results to these of related work and we show that we can
achieve the same or better quality. On the technical side, we
propose a sparse solution to the global least squares prob-
lem, while we still maintain global propagation of the color
appearance. To achieve it, we draw from the non-linear un-
supervised manifold learning methodology and show how
to utilize it for image processing. This has not been done
in the previous works. In addition, we propose a simple ac-
celeration technique based on sub-sampling and multi-linear
interpolation.

One of our goals for future work is to extend the ap-
proach in order to process video. Further, we want to inves-
tigate more involved ways to incorporate spatial control.

Acknowledgements

This research was financially supported by Science Founda-
tion Arizona, US Navy, and NSF. We would like tom thank
Tom Ang (Fig. 14) and Norman Koren (Fig. 1, 5) for the
permission to use their outstanding photographs.

References

1. ADOBE Inc. Photoshop. �������������	����	���
	������

��	�	��	������, 2012.
2. Xiaobo An and Fabio Pellacini. AppProp: all-pairs appearance-

space edit propagation. ACM Transactions on Graphics, 27(3):1,
August 2008.

3. Xiaobo An and Fabio Pellacini. User-Controllable Color Transfer.
Computer Graphics Forum, 29(2):263–271, June 2010.

4. Robert Carroll, Ravi Ramamoorthi, and Maneesh Agrawala. Illu-
mination decomposition for material recoloring with consistent in-
terreflections. ACM Transactions on Graphics, 30(4):1, July 2011.

5. Youngha Chang, Suguru Saito, and Masayuki Nakajima.
Example-Based Color Transformation of Image and Video Using
Basic Color Categories. IEEE Transactions on Image Processing,
16(2):329–336, February 2007.

6. Youngha Chang, Suguru Saito, Keiji Uchikawa, and Masayuki
Nakajima. Example-Based Color Stylization of Images. ACM
Transactions on Applied Perception, 2(3):322–345, July 2005.

7. Jiawen Chen, Sylvain Paris, and Frédo Durand. Real-time edge-
aware image processing with the bilateral grid. ACM Transactions
on Graphics, 26(3):103, July 2007.

8. Alex Yong-Sang Chia, Shaojie Zhuo, Raj Kumar Gupta, Yu-Wing
Tai, Siu-Yeung Cho, Ping Tan, and Stephen Lin. Semantic col-
orization with internet images. ACM Transactions on Graphics,
30(6):1, December 2011.

9. Daniel Cohen-Or, Olga Sorkine, Ran Gal, Tommer Leyvand, and
Ying-Qing Xu. Color harmonization. ACM Transactions on
Graphics, 25(3):624, July 2006.

10. Zeev Farbman, Raanan Fattal, and Dani Lischinski. Diffusion
maps for edge-aware image editing. ACM Transactions on Graph-
ics, 29(6):1, December 2010.

11. Charless Fowlkes, Serge Belongie, Fan Chung, and Jitendra Ma-
lik. Spectral grouping using the Nyström method. IEEE transac-
tions on pattern analysis and machine intelligence, 26(2):214–25,
February 2004.

12. Anat Levin, Dani Lischinski, and Yair Weiss. Colorization using
optimization. ACM Transactions on Graphics, 23(3):689, August
2004.

13. Meng-Tsan Li, Ming-Long Huang, and Chung-Ming Wang.
Example-based color alternation for images. In 2010 2nd Inter-
national Conference on Computer Engineering and Technology,
pages V7–316–V7–320. IEEE, April 2010.

14. Yong Li, Tao Ju, and Shi-Min Hu. Instant Propagation of
Sparse Edits on Images and Videos. Computer Graphics Forum,
29(7):2049–2054, September 2010.

15. Dani Lischinski, Zeev Farbman, Matt Uyttendaele, and Richard
Szeliski. Interactive local adjustment of tonal values. ACM Trans-
actions on Graphics, 25(3):646, July 2006.

16. Xiaopei Liu, Liang Wan, Yingge Qu, Tien-Tsin Wong, Stephen
Lin, Chi-Sing Leung, and Pheng-Ann Heng. Intrinsic colorization.
ACM Transactions on Graphics, 27(5):1, December 2008.

17. Qing Luan, Fang Wen, and Ying-Qing Xu. Color Transfer Brush.
In 15th Pacific Conference on Computer Graphics and Applica-
tions (PG’07), pages 465–468. IEEE, October 2007.

18. David M. Mount and Sunil Arya. ANN: A Library for Approx-
imate Nearest Neighbor Searching. ����������������������

��	��������, Jan 2010.
19. B Nadler, S Lafon, R R Coifman, and I G Kevrekidis. Diffusion

Maps, Spectral Clustering and Eigenfunctions of Fokker-Planck
Operators. Advances in Neural Information Processing Systems
18, 18(1):955–962, 2005.

20. David Nagel. Color Replacement in Photoshop CS. �������

�����������������������
��	�����������������	
�����

���� �
�����!����, 9 2004.
21. Fabio Pellacini and Jason Lawrence. AppWand. ACM Transac-

tions on Graphics, 26(3):54, July 2007.
22. F. Pitie and A. Kokaram. The linear Monge-Kantorovitch linear

colour mapping for example-based colour transfer. Visual Media
Production, 2007. IETCVMP. 4th European Conference on, pages
1–9, 2007.

23. F. Pitie, A Kokaram, and R Dahyot. Automated colour grading
using colour distribution transfer. Computer Vision and Image
Understanding, 107(1-2):123–137, July 2007.

24. E Reinhard, M. Adhikhmin, B Gooch, and P Shirley. Color trans-
fer between images. IEEE Computer Graphics and Applications,
21(4):34–41, 2001.

25. S T Roweis and L K Saul. Nonlinear dimensionality reduc-
tion by locally linear embedding. Science (New York, N.Y.),
290(5500):2323–6, December 2000.

26. Lawrence K. Saul and Sam T. Roweis. Think Globally, Fit Lo-
cally: Unsupervised Learning of Low Dimensional Manifolds.
Journal of Machine Learning Research, 4(2):119–155, February
2004.

DRAFT - The definite version is available at: �������������
����
�����	���	������"��#��#�#$�"%�&��

http://www.adobe.com/products/photoshop.html
http://www.adobe.com/products/photoshop.html
http://www.cs.umd.edu/~mount/ANN/
http://www.cs.umd.edu/~mount/ANN/
http://www.digitalmediadesigner.com/2004/01_jan/tutorials/pscs-cr040129.htm
http://www.digitalmediadesigner.com/2004/01_jan/tutorials/pscs-cr040129.htm
http://www.digitalmediadesigner.com/2004/01_jan/tutorials/pscs-cr040129.htm
http://www.springerlink.com/content/q1272h717v1q3262/

12 Przemyslaw Musialski et al.

Original User Input Our Result

Our Result
10 neighbors

(a
)

C
ar

ro
ll

et
 a

l.
20

11

Reference Result

(b
)

P
h

o
to

sh
o

p
 (

e)
 P

it
ie

 &
 K

o
ka

ra
m

 2
00

7
 (

c)
 F

ar
b

m
an

 e
t

al
. 2

01
0

 (
d

)
C

h
en

 e
t

al
. 2

00
7

 (
f)

 P
el

la
ci

n
i &

 L
aw

ra
n

ce
 2

00
7

(1
0

n
ei

g
h

b
o

rs
)

Fig. 13 Comparison to our results with those of other systems. Refer to Section 4.2 for the discussion of the particular results. Best seen in
electronic version in close-up.

DRAFT - The definite version is available at: �������������
����
�����	���	������"��#��#�#$�"%�&��

http://www.springerlink.com/content/q1272h717v1q3262/

A Framework for Interactive Image Color Editing 13

Original User Input Our Result

Fig. 14 Result of our recoloring method. In each row, from left to right: original, user input in form of strokes, our output. All original images in
this figure are copyrighted by Tom Ang (������������	������	��). Best seen in the electronic version in close-up.

Fig. 15 Our method can also be used to custom black-white conversion and it also allows selective conversion of spatial regions. Best seen in the
electronic version in close-up.

DRAFT - The definite version is available at: �������������
����
�����	���	������"��#��#�#$�"%�&��

http://www.tomang.com/
http://www.springerlink.com/content/q1272h717v1q3262/

14 Przemyslaw Musialski et al.

27. L. Shapira, Ariel Shamir, and Daniel Cohen-Or. Image Appear-
ance Exploration by Model-Based Navigation. Computer Graph-
ics Forum, 28(2):629–638, April 2009.

28. Maureen Stone. A Field Guide to Digital Color. A K Peters/CRC
Press, 2003.

29. Yu-Wing Tai, Jiaya Jia, and Chi-Keung Tang. Local Color Trans-
fer via Probabilistic Segmentation by Expectation-Maximization.
In 2005 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR’05), pages 747–754. IEEE, 2005.

30. Yu-Wing Tai, Jiaya Jia, and Chi-Keung Tang. Soft color segmen-
tation and its applications. IEEE transactions on pattern analysis
and machine intelligence, 29(9):1520–37, September 2007.

31. Baoyuan Wang, Yizhou Yu, Tien-Tsin Wong, Chun Chen, and
Ying-Qing Xu. Data-driven image color theme enhancement.
ACM Transactions on Graphics, 29(6):1, December 2010.

32. Baoyuan Wang, Yizhou Yu, and Ying-Qing Xu. Example-based
image color and tone style enhancement. ACM Transactions on
Graphics, 30(4):1, July 2011.

33. Jue Wang and Michael F. Cohen. Optimized Color Sampling for
Robust Matting. In 2007 IEEE Conference on Computer Vision
and Pattern Recognition, pages 1–8. IEEE, June 2007.

34. Tomihisa Welsh, Michael Ashikhmin, and Klaus Mueller. Trans-
ferring color to greyscale images. ACM Transactions on Graphics,
21(3):277, July 2002.

35. Chung-Lin Wen, Chang-Hsi Hsieh, Bing-Yu Chen, and Ming
Ouhyoung. Example-based Multiple Local Color Transfer by
Strokes. Computer Graphics Forum, 27(7):1765–1772, October
2008.

36. Xuezhong Xiao and Lizhuang Ma. Color transfer in correlated
color space. In Proceedings of the 2006 ACM international con-
ference on Virtual reality continuum and its applications - VRCIA
’06, page 305, New York, New York, USA, 2006. ACM Press.

37. Xuezhong Xiao and Lizhuang Ma. Gradient-Preserving Color
Transfer. Computer Graphics Forum, 28(7):1879–1886, October
2009.

38. Kun Xu, Yong Li, Tao Ju, Shi-Min Hu, and Tian-Qiang Liu. Effi-
cient affinity-based edit propagation using K-D tree. ACM Trans-
actions on Graphics, 28(5):1, December 2009.

39. Chuan-Kai Yang and Li-Kai Peng. Automatic mood-transferring
between color images. IEEE computer graphics and applications,
28(2):52–61, March 2008.

40. L. Yatziv and G. Sapiro. Fast image and video colorization using
chrominance blending. IEEE Transactions on Image Processing,
15(5):1120–1129, May 2006.

Przemyslaw Musialski received
the PhD degree in computer science
in 2010 from the Vienna University
of Technology and the MSc degree
in media systems in 2007 from the
Bauhaus University Weimar. From
2007 to 2011 he was with VRVis
Research Center in Vienna. From
2011 to 2012 he was postdoc at
the Arizona State University. Since
2012 he is postdoc at Vienna Uni-
versity of Technology conducting
research in interactive modeling and
image processing.

Ming Cui received a Ph.D. form
the Arizona State University (ASU)
in 2010, a M.Sc. in Computer Sci-
ence and a B.E. in Civil Engi-
neering from Zhejiang University,
Hangzhou, China in 2005 and 2002,
respectively. Currently he is with
Google, prior to that he worked
at the ASU in Partnership for Re-
search in Spatial Modeling lab
(PRISM) from 2005. His research
interests include computer graphics
and image processing.

Jieping Ye received the Ph.D. de-
gree in computer science from
the University of Minnesota Twin
Cities in 2005. He is associate pro-
fessor in the Department of Com-
puter Science and Engineering, Ari-
zona State University. He has been
a core faculty member of the Center
for Evolutionary Medicine and In-
formatics, The Bio-design Institute,
Arizona State University, since Au-
gust 2005. His research interests in-
clude machine learning, data min-
ing, and biomedical informatics. He
received the NSF CAREER award

in 2010.

Anshuman Razdan received a
Ph.D. degree in Computer Science
and a M.Sc. and B.S. degrees in Me-
chanical Engineering. He is Asso-
ciate Professor in the Division of
Computing Studies and the Director
of Advanced Technology Innova-
tion Collaboratory and the I3DEA
Laboratory at Arizona State Uni-
versity, Polytechnic campus. His re-
search interests include geometric
design, computer graphics, docu-
ment exploitation, and geospatial
visualization and analysis. He is the

principal investigator and a collaborator on several federal grants, in-
cluding NSF, NGA, and NIH.

Peter Wonka received his Ph.D.
and M.S. from the Vienna Uni-
versity of Technology in Computer
Science and an M.S. in Urban Plan-
ning from the same institution. He
is associate professor at the King
Abdullah University of Science and
Technology (KAUST) and Arizona
State University. His research inter-
ests include various topics in com-
puter graphics, visualization, and
image processing.

DRAFT - The definite version is available at: �������������
����
�����	���	������"��#��#�#$�"%�&��

http://www.springerlink.com/content/q1272h717v1q3262/

	Introduction
	Related Work
	Controllable Optimization Algorithm
	Results and Applications
	Conclusions
	Acknowledgment

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 100
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /None
 /ColorImageResolution 100
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /None
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on 'Smallest File Size'] Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [595.276 841.890]
>> setpagedevice

